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Temporally disordered granular flow: A model of landslides

Bosiljka Tadić*
Jožef Stefan Institute, P.O. Box 3000, 1001-Ljubljana, Slovenia

~Received 23 September 1997; revised manuscript received 10 December 1997!

We propose and study numerically a stochastic cellular automaton model for the dynamics of granular
materials with temporal disorder representing random variation of the diffusion probability 12m(t) around
threshold value 12m0 during the course of an avalanche. Combined with the slope threshold dynamics, the
temporal disorder yields a series of secondary instabilities, resembling those in realistic granular slides. When
the parameterm0 is lower than the critical valuem0

!'0.4, the dynamics is dominated by occasional huge
sandslides. For the range of valuesm0

!<m0,1 the critical steady states occur, which are characterized by
multifractal scaling properties of the slide distributions and continuously varying critical exponentstX(m0).
The mass distribution exponent form0'0.45 is in agreement with the reported value that characterizes Hima-
layan sandslides. Atm05m0

! the exponents governing distributions of large relaxation events reach numerical
values which are close to those of parity-conserving universality class, whereas for small avalanches they are
close to the mean-field exponents.@S1063-651X~98!01904-7#

PACS number~s!: 81.05.Rm, 64.60.Lx, 05.40.1j, 02.60.Cb
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I. INTRODUCTION

Understanding flow in realistic granular materials appe
to be an important problem from both a practical and a t
oretical point of view@1,2#. Renewed theoretical interest i
this field has concentrated on the origin of scaling that ch
acterizes phenomena in slowly driven granular materi
distributions of avalanches in realistic granular piles@3–8#,
stratification @9#, compactification @10#, etc. The central
question is as follows: Do granular piles self-organize in
critical steady states@1# and if so, under what conditions
Another interesting phenomenon related to dynamics
granular materials in nature is the landscape evolution du
overland and channel flow, which results in fractal topog
phy. The underlying mechanisms of erosion with spatia
and temporally varying erosion rates are the subject of in
sive discussion in the literature@11#.

It has been understood that realistic flow in slowly driv
granular piles depends on many parameters, such as sh
and sizes~and masses! of individual beans, roughness o
contact surfaces, their wetting properties, etc. Random~or
controlled! variations in some of these parameters lead
fluctuations of contact angles and force distribution@12#,
nonlinear friction, stochastic character of diffusion, veloc
and convection directions, and fluctuations in angle of
pose. Unidirectional flow—reflecting dependence
gravity—is common in all granular materials, as is the o
currence of secondary avalanches following the initial ins
bility. Molecular dynamic~MD! simulations@13# and vari-
ous cellular automata models with stochastic relaxation ru
@14–16# have been useful in describing certain aspects
realistic granular flow. However, comparison with measu
avalanche properties has been only qualitative.

In experiments the most often measured quantity is
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outflow currentJ, which is defined as the number of grain
that leave the system when an avalanche hits its lo
boundary. The probability distribution of outflow curren
P(J) in the steady state obeys the scaling formP(J,L)
5L2bG(JL2n) with b52n when the linear sizeL of the
pile support is varied, as found in Ref.@4# for sandpiles of
relatively small sizes. Using silicon dioxide sand Rosend
et al. @5# concluded that small and large avalanches beh
differently and the distributionP(J) shows no simple finite-
size scaling. Moreover, avalanche statistics was found
vary with the size of grains used. Measuring theinternal
avalanches Bretzet al. @6# have also observed that two type
of statistics are governing small and large avalanches.
measured distribution of avalanche size exhibits a power-
behaviorD(s);s2ts with @6# ts'2.14, which probably ap-
plies for avalanches of small sizes. The two time~and size!
scales were more clearly demonstrated recently by MD sim
lations @13#, leading to two exponentsts52 for short, and
ts51.5 for long time scale. A sophisticated measuremen
the internal avalanches was done with a one-dimensio
ricepile @7#, in which elongated rice grains were used to su
press inertial effects. Scaling properties of the distribution
dissipated energy were determined, indicating that detail
the dissipation are responsible for the occurrence of the c
cal state. In another experiment the transport ofindividual
grains was monitored, and the distribution of transit time w
also found to exhibit robust scaling behavior@8#.

The collected data for the landslides in nature, trigge
by various mechanisms, also exhibit a power-law behav
@1#. The exponents for the area of slides have been estim
in the rangets51.1622.25@17#, depending on the dominat
ing triggering mechanism and region where the data w
collected. The distribution of the mass collected from Him
layan sandslides is characterized by the exponenttm50.19
20.23 @18#.

In the present work we introduce a new stochastic mo
of directional flow on the two-dimensional square lattice
4375 © 1998 The American Physical Society
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4376 57BOSILJKA TADIĆ
which numerous after-avalanches are generated within a
tain correlation time due to temporal disorder in the diffusi
term. The dynamic rules are a combination of stochastic
fusion and deterministic branching processes. The diffus
probabilities changerandomly in time, but are space inde
pendent. Fluctuations in diffusion probability 12m(t)
around threshold value 12m0, which depends on externa
conditions and thus appears as a control parameter, is m
vated by fluctuations in wetting and drying conditionsafter
an avalanche commenced~see Sec. II!. Notice that the life-
time of an avalanche can range from seconds in the lab
tory granular piles to geological times in the landscape e
lution. Therefore, the change of local stability conditio
during the avalanche lifetime is a natural choice in the c
of long relaxation times. A similar type of disorder in d
rected percolation processes was recently considered
Jensen@19#.

We perform extensive numerical simulations for vario
values of the parameterm0 and lattice sizesL, and quantify
the behavior by the landslide distributions of:~i! duration
t—time that an instability lasts measured on the internal ti
scale; ~ii ! size s—area affected by an instability, and~iii !
massn—number of grains that exhibit slides during one av
lanche, and~iv! by outflow currentJ—number of grains tha
fall off the open boundaries of the pile. Self-organized cr
cal states are found for a range of values of the control
rameterm0>m0

!'0.4, which are characterized with mult
fractal scaling properties andm0-dependent critical
exponents. Form0,m0

! large discharging events occur occ
sionally, representing large-scale erosional reorganizatio
the system rather than fluctuations around a well-defi
critical state.

FIG. 1. Two examples of avalanches running from left to rig
~below! in the scaling regionm0.m0

! and ~top! in the region of
erosional avalanches. Multiple topplings up to fourth order
marked by different degrees of gray color.
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The organization of the paper is as follows: In Sec. II w
introduce the model and show two representative exam
of landslides. The probability distributions of slides and th
scaling properties are determined in Secs. III and IV for va
ous values of the linear system sizeL and the parameterm0
in the scaling region. Section V contains a short summ
and the discussion of the results.

II. MODEL AND LANDSLIDES

We consider a square lattice oriented downward, with
dynamic variable, heighth( i , j ), associated to each site. Th
relaxation rules are a combination of~i! stochastic diffusion
by two particles whenh( i , j )>hc with probability m(t),
which varies in time~see below!, and~ii ! deterministic con-
vection, when local slopes( i , j )[h( i , j )2h( i 11,j 6) ex-
ceeds some critical values( i , j )>sc . At each site the rule
~ii ! is applied by toppling one particle along an unstab
slope repeatedly until both local slopes drop belowsc . The
system is updated in parallel, which leads to a well-defin
internal time scale of the relaxation process. The updatin
stopped whenall affected sites become temporarily stab
Here (i 11,j 6) are positions of two downward neighbors
the site (i , j ). Mass flow is always downward, however, th
instability can propagate backwards both due to nonlo
slope condition and due to time-dependent diffusion pr
ability. We assume that diffusion probability fluctuates s
chastically in time, but is space independent. Implementa
of this rule is done as follows: We preset the threshold va
m0, which is the same for all sites in the system. Then
each site that is affected by an avalanche a new valuem(t) is
selected at each time step until the avalanche stops from
of random numbers evenly distributed on the interval~0,1!,
and toppling is accepted ifm(t)<m0, and rejected otherwise
@20#. Therefore, form051 all sites topple~the rule becomes
deterministic!, whereas form0,1 an unstable site might no
topple at a given timet because of instantly low diffusion
probability p(t)[12m(t),12m0, however, it may topple
at a later time stept8.t if p(t8) exceeds the threshold dif
fusion probability 12m0. This temporally varying disorde
mimics changes in sticking properties with time, which th
locally influence the angle of repose. This phenomenon
be of interest for the flow of granular materials with larg
effective friction, such as ricepiles@7# in which the effects of
granular boundaries may depend on the local dynamic v
able h( i , j ) and its derivatives. Therefore the differenc
m(t)2m0 is a measure of the dynamic friction. Recent
proposed models with stochastic critical slope rules in o
dimension@15# proved very successful in describing the o
servedtransportproperties of ricepiles@8#. Whereas forava-
lanche distributions these models predict universal scal
exponents, in contrast to the experimental observations@3,5–
7#.

Another interesting example is represented by landsc
evolution, which can also be considered as a granular fl
@1#, in which local wetting properties fluctuate in time. B
wetting,p(t) drops below the threshold diffusion probabilit
12m0, the grains stick together, and the system builds
large local slopes. At a later timet8 these slopes may becom
unstable either when due to dryingp(t8) exceeds the thresh
old, or when the slopes become larger than critical. T

:

e
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FIG. 2. Double-logarithmic plot of the integrated probabili
distribution of avalanche durationsP(t) vs duration t for L
5128 and various values of the control parameterm051, 0.9,
0.8, 0.7, 0.6, and 0.5~top to bottom!. Dashed and dotted line
indicate slopes of small and large avalanches, respectively
set: Scaling exponent of large avalanchest t21 vs m0.
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different classes of triggering mechanisms of landslides h
been discussed in the literature@21#: rainfall and water level,
which control soil moisture on one side, and ground moti
which leads to slope variation on the other. The values
measured exponents of landslide distributions are dire
related to the locally prevailing triggering mechanism@17#.
In principle, threshold shear stress may depend on the s
angle and on soil properties, which are influenced by s
moisture. We assume that these two mechanisms are re
dynamically. In the present model both mechanisms are
fective: The soil moisture, which affects local height, var
stochastically in time at each site, whereas we assume
the shear stress threshold depends only on the local a
and thus remains deterministic. Moreover, by tuning
critical height mechanism via the parameterm0, we find non-
universal critical properties and a transition to noncritic
dynamic states, in qualitative agreement with experime
observations. A different model of landslides is obtained
‘‘averaging out’’ the critical height mechanism and assum
stochastic variations of critical slope, which can be viewed
one of few possible generalizations of stochastic criti
slope models@15# to two dimensions. So far the results
two-dimensional stochastic critical slope models are
available in the literature@22#.

The system is perturbed by adding grains one at a tim
a random site on the first row, thus increasing local hei
and slopes. Therefore, an instability~avalanche! can in prin-
ciple start only from the top, however, secondary avalanc
are commencing from any affected site in the system, t
gered either by a high instant value ofm(t) or by supercriti-
cal slope. In order to have ‘‘clean’’ statistics, we start ea
avalanche from the top row and consider only those seco
ary avalanches that arespatially connectedwithin a certain
correlation timetc . Heretc is not a prefixed parameter, but
is determined by the relaxation process itself. Typicallytc is
determined by the lifetime of the instability, thustc@1 for
large relaxation events. There are two interesting limits
our model. In the limitm051 it reduces to the deterministi
directed model@23#, whereas form0,1 and in the limit
when the correlation time isstrictly equal to one, it reduce
to the model considered in Ref.@16#.
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The temporally varying diffusion probability is a new in
gredient of our model, which was not considered so far
CA models of granular flow. It appears to be responsi
both for new scaling properties and for the transition into
state dominated by large erosional avalanches. In Fig. 1
shown two examples of simulated landslides with multip
topplings due to secondary avalanches up to fourth degre
the scaling region~bottom! and a large erosional event~top!.

III. PROBABILITY DISTRIBUTIONS OF SLIDES
AND THEIR SCALING PROPERTIES

In this section we present results of numerical simulatio
of avalanche statistics. As discussed in Sec. I, a lands
consists of many interpenetrating avalanches of different
gree, which are spatially connected to one another within
lifetime of the instability. For concreteness, the probabil
distributions are determined for thewhole relaxation event,
which is equally termed as avalanche and/or landslide.
apply open boundary conditions in the perpendicular dir
tion ~see also later an example where periodic bounda
have been used!. In most simulations we usedhc52 and
sc58. By varying the external parameterm0 between 0 and
1 and lattice sizeL between 12 and 192, we determine t
distributions of size, mass, and duration of avalanc
~slides!.

In Figs. 2 and 3 the distributions of avalanche durati
longer thant, P(t), size larger thans, D(s), and mass
larger thann, D(n), are shown forL5128 and various
values of the parameterm0. @Notice that in the deterministic
limit m051 the distributionsD(s) and D(n) become iden-
tical, however, unbounded number of topplings at each
for m0,1 leads to two distinct distributions.# For m0,1 a
characteristic behavior with two scales appears: the s
section corresponding to small avalanches, and the flat
tion to large avalanches. The crossover length between s
and large relaxation events varies withm0, however, it re-
mains small~cf. Figs. 2 and 3!, so that distributions of ava
lanches smaller than the crossover length extend only o
one decade. Here we concentrate on the behavior of la
avalanches~i.e., avalanches that are larger than the crosso
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FIG. 3. Double-logarithmic plot of the integrated probabili
distribution of avalanche sizeD(s) vs sizes ~bottom! and mass
D(n) vs n ~top!, for L5128 and for~top to bottom! m051, 0.8,
0.7, 0.6, and 0.5 . Inset: Scaling exponent of large avalanc
ts21 vs m0 ~bottom figure! andtn21 vs m0 ~top figure!.
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length!. With lowering the threshold diffusion probabilitym0
a large number of secondary instabilities develop, leadin
the flattening of the distributions. However, we find a pow
law behavior P(t);t12t t, D(s);s12ts, and D(n)
;n12tn, as long asm0>0.4. The exponentst t , ts , and
tn appear to vary continuously with control parameterm0, as
shown in the insets to Figs. 2 and 3. The character of
dynamics changes belowm0

!'0.4, where only occasionally
very large avalanches occur. We study in some more de
the relaxation clusters atm050.4. Numerical values of the
exponents aret t51.253, ts51.202, andtn51.190 for the
distributions of duration, size, and mass of avalanches,
spectively. In addition, we have measured the distribution
linear elongation of avalanches in the direction of transp
P(l );l 2t l , the mass-to-scale ratio with respect to para
length ^s& l ;l D i, and the average transverse extent^l '&
;l z. We find t l 51.578, D i51.572, and z5D i21
50.572~estimated error bars60.03). These values are clos
to the numerical values of the exponents in the par
conserving universality class@24# of branching processes
On the other hand, the exponents governing small ev
increase with decreasingm0 ~cf. Fig. 2!, reaching the values
t t

s51.92, ts
s51.67, andtn

s51.45 for the duration, size
and mass of small avalanches, respectively, atm05m0

! . No-
tice that although the scale of the distributions is small, be
bounded by the crossover length, these values of the e
nents indicate closeness of the mean-field universality cl

Multifractal scaling properties of landslide distributions

By varying the lattice sizeL with m0 fixed in the scaling
region we study the finite-size effects on the distributions
avalanches. In contrast to most of the two-dimensional sa
to
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pile automata models in the literature, the present distri
tions do not obey simple finite-size scaling. Instead, we fi
that different regions of a large avalanche have differe
fractal properties and consequently their own exponen
The following multifractal scaling form@25#;

P~X,L !;~L/L0!fX~aX!, ~1!

with

aX[S ln
X

X0
D Y S ln

L

L0
D ~2!

fits well our data with L051/4 and X051/4. ~Here
X[t,s,J). In Figs. 4 and 5 we show the probability distr
butions of duration and size, respectively, for five differe
lattice sizesL and for fixed m050.7. The corresponding
spectral functionsf t(a t) versusa t andfs(as) versusas are
shown in the insets to Figs. 4 and 5.

IV. OUTFLOW CURRENT

The outflow current results only from those avalanch
that reach an open boundary of the system. The size of s
events and their frequency is a relative measure of the tr
port processes that occur in the interior of the pile. The o
flow current is easy to measure both in laboratory exp
ments and in natural landslides. For instance, the width
the sedimented layers of granular materials that occur be
steep sections in mountains are directly related to the siz
outflow avalanches from that section. Sensitivity of the o
flow current distributionP(J) to variations in the control
parameter is monitored in our model forL548 with periodic
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FIG. 4. Double-logarithmic plot of the distributionP(t) vs t
for m050.7 and for various lattice sizesL512, 24, 48, 96, and
192 ~left to right! with open boundary conditions. Inset: Multi
fractal scaling functionf t(a t) vs a t .
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boundary conditions in the perpendicular direction. In Fig
we show the distributionP(J) versusJ for m051, 0.8, 0.6,
0.4, and 0.2. Once again, the change in the character o
dynamics belowm0

! is also seen in the outflow current, whic
becomes centered around a certain mean value~depending
on the lattice size!. Above m0

! , we find that the outflow
current distribution exhibits multifractal scaling properti
according to Eqs.~1! and ~2!. The results form050.7 and
varying L from 12 to 192, obtained for open boundary co
ditions in perpendicular direction, are shown in Fig. 7.

Additional information about transport processes in
interior of the system is obtained by measuring the outfl
current as a function of time, and time intervals betwe
successive outflow events. In the inset to Fig. 6 we show
average time interval between outflow events as a functio
the control parameterm0. The time intervals grow exponen
tially on loweringm0. In Fig. 8 the outflow current is show
as a function of time~measured on the external time sca
i.e., by the number of added particles!, averaged over 1000
time steps forL554 and with periodic perpendicular boun
he

-

e

n
e

of

,

ary conditions. Form0>0.4 ~cf. lower three panels!, the out-
flow current fluctuates around mean valueJ051, thus bal-
ancing the input current and maintaining the steady state
the system~a steady state is characterized by balance
tween input and output currents!. The amplitude of the out-
flow events increases with decreasingm0, and at the same
time the frequency of events decreases. This behavior is
sistent with the histogram that is shown in Fig. 6. The ch
acter of the dynamics changes form0,m0

! ~see top panel in
Fig. 8!, with dominating output events of large size and lar
time intervals between the events. Atm05m0

! a dynamic
phase transition occurs between critical steady states a
m0

! and states without long-range correlations bel
m05m0

! . ~Similar phase transitions are found also in Re
@16# and@26#, however, in different universality classes.! Al-
though form0,m0

! the system is likely to build up a finite
slope ~unlimited piling is prevented by the determinist
critical slope rule!, preliminary results show that a substa
tial growth of the average slope occurs only form0,0.2,
s
ul-
FIG. 5. Double-logarithmic plot of the distribution of size
D(s) vs s for the same set of parameters as Fig. 4. Inset: M
tifractal scaling functionfs(as) vs as .
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4380 57BOSILJKA TADIĆ
reaching the valuesc at m0→0. Further work is necessary i
order to investigate the universality class of this phase tr
sition.

V. DISCUSSION AND CONCLUSIONS

In the present model, combined relaxation rules with te
poral disorder are responsible for numerous after-avalanc
which lead to large relaxation events resembling sandsl
in realistic granular materials. Numerical simulations sh
that such large relaxation events exhibit scaling behavior
a range of values of the control parameterm0>m0

!'0.4. The
avalanche distributions are characterized by continuou
varying scaling exponents, in qualitative agreement with
data collected from natural landslides. Moreover, comp

FIG. 7. Distribution of outflow current measured with ope
boundary conditions for various lattice sizesL512, 24, 48, 96, and
192 ~left to right! and for fixedm050.7. Inset: Spectral function
fJ(aJ) vs aJ .

FIG. 6. Double-logarithmic plot of the probability distributio
of outflow currentP(J) vs J for L548 with periodic boundary
conditions in perpendicular direction, and form051, 0.8, 0.6, 0.4,
and 0.2~top to bottom!. Inset: Average time intervals between ou
flow events on the same lattice forsc58 ~open triangles! and sc

54 ~filled triangles!.
n-

-
es,
es

r

ly
e
i-
son of the exponent of the avalanche mass distributiontn for
0.4,m0,0.5 with the one that characterizes Himalay
sandslides reported in Ref.@18# is satisfactory. For various
lattice sizes the distributions are characterized by multifra
rather than finite-size scaling properties. The determini
part of the relaxation rules leads to branching processes w
on the average, even number of offsprings. For this rea
the scaling exponents for the distributions reach numer
values characteristic of the modulo-two conserving proces
~also known as parity-conserving processes! before scaling
behavior disappears atm05m0

! . Below m0
! the critical

steady state is lost. The dynamics is dominated by large
sional avalanches in a region close tom0

! and a net average
slope appears for smaller values ofm0.
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FIG. 8. Outflow currentJ(t) vs time t ~measured in number o
added particles!, averaged over 1000 time steps, forL554 and
m051, 0.7, 0.4, and 0.3~bottom to top! and with periodic boundary
conditions. Dashed lines are mean values calculated by linear fi
the data fort.40: ~bottom to top! 0.9972, 1.0004, 0.9935, an
0.9892. Slopes of the dashed lines are smaller than 1025 in each
case.
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